Antioxidant Protection Mechanisms in the Cardiovascular System

Baharuddin Baharuddin *

Medical Biochemistry Laboratory, Medical Faculty, University of Surabaya, Indonesia and Department of Medical Science, Medical Faculty, University of Surabaya, Indonesia.

*Author to whom correspondence should be addressed.


The cardiovascular system, consisting of the heart and blood vessels, plays a critical role in maintaining the consistency of blood flow to supply oxygen throughout the body. Changes in the dynamics of blood flow can occur with the progression of disease exposure. Reactive oxygen species (ROS) are a major trigger for cardiomyocyte and endothelial dysfunction. Therefore, an antioxidant defense system is essential for prevention. This review aims to provide insights into the primary mechanisms of antioxidants in their role as cardioprotective agents. The human body has at least five defense mechanisms against ROS. Understanding these mechanisms will offer readers a strong perspective on the importance of sufficient antioxidants in the body to maintain cardiovascular function.

Keywords: Antioxidants, cardiovascular mechanisms

How to Cite

Baharuddin, B. (2024). Antioxidant Protection Mechanisms in the Cardiovascular System. Asian Journal of Medicine and Health, 22(6), 140–146.


Download data is not yet available.


Amponsah-Offeh M, Diaba-Nuhoho P, Speier S, Morawietz H. Oxidative stress, antioxidants and hypertension. Antioxidants. 2023;12(2):281. DOI: 10.3390/antiox12020281

MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20 536 high-risk individuals: A randomised placebo-controlled trial. The Lancet. 2002;360(9326):23-33. DOI: 10.1016/S0140-6736(02)09328-5

Akhigbe R, Ajayi A. The impact of reactive oxygen species in the development of cardiometabolic disorders: A review. Lipids Health Dis. 2021;20(1):23. DOI: 10.1186/s12944-021-01435-7

Dubois-Deruy E, Peugnet V, Turkieh A, Pinet F. Oxidative Stress in Cardiovascular Diseases. Antioxidants. 2020;9(9):864. DOI: 10.3390/antiox9090864

Kumar V, Bishayee K, Park S, Lee U, Kim J. Oxidative stress in cerebrovascular disease and associated diseases. Front Endocrinol. 2023;14. DOI: 10.3389/fendo.2023.1124419

Yan Q, Liu S, Sun Y, et al. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J Transl Med. 2023;21(1):519. DOI: 10.1186/s12967-023-04361-7

Lian Y, Li Y, Liu A, Ghosh S, Shi Y, Huang H. Dietary antioxidants and vascular calcification: From pharmacological mechanisms to challenges. Biomed Pharmacother. 2023;168:115693. DOI: 10.1016/j.biopha.2023.115693

Anand S, Bharadvaja N. Potential benefits of nutraceuticals for oxidative stress management. Rev Bras Farmacogn. 2022; 32(2):211-220. DOI: 10.1007/s43450-022-00246-w

Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford University Press; 2015.

Caiati C, Stanca A, Lepera ME. Free radicals and obesity-related chronic inflammation contrasted by antioxidants: A new perspective in coronary artery disease. Metabolites. 2023;13(6):712. DOI: 10.3390/metabo13060712

Janaszak-Jasiecka A, Płoska A, Wierońska JM, Dobrucki LW, Kalinowski L. Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets. Cell Mol Biol Lett. 2023;28(1):21. DOI: 10.1186/s11658-023-00423-2

Martemucci G, Costagliola C, Mariano M, D’andrea L, Napolitano P, D’Alessandro AG. Free radical properties, source and targets, antioxidant consumption and health. Oxygen. 2022;2(2):48-78. DOI: 10.3390/oxygen2020006

Wang XQ, Wang W, Peng M, Zhang XZ. Free radicals for cancer theranostics. Biomaterials. 2021;266:120474. DOI: 10.1016/j.biomaterials.2020.120474

Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int J Mol Sci. 2023;24(9):7910. DOI: 10.3390/ijms24097910

Angelov AK, Markov M, Ivanova M, Georgiev T. The genesis of cardiovascular risk in inflammatory arthritis: Insights into glycocalyx shedding, endothelial dysfunction, and atherosclerosis initiation. Clin Rheumatol. 2023;42(10):2541-2555. DOI: 10.1007/s10067-023-06738-x

Tsigkou V, Oikonomou E, Anastasiou A, et al. Molecular mechanisms and therapeutic implications of endothelial dysfunction in patients with heart failure. Int J Mol Sci. 2023;24(5):4321. DOI: 10.3390/ijms24054321

Kwaśniewska M, Pikala M, Grygorczuk O, et al. Dietary Antioxidants, Quality of Nutrition and Cardiovascular Characteristics among Omnivores, Flexitarians and Vegetarians in Poland—The Results of Multicenter National Representative Survey WOBASZ. Antioxidants. 2023;12(2):222. DOI: 10.3390/antiox12020222

Glenn AJ, Aune D, Freisling H, et al. Nuts and Cardiovascular Disease Outcomes: A Review of the Evidence and Future Directions. Nutrients. 2023;15(4):911. DOI: 10.3390/nu15040911

Rahaman MdM, Hossain R, Herrera‐Bravo J, et al. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Sci Nutr. 2023;11(4):1657-1670. DOI: 10.1002/fsn3.3217

Davies KJA. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life. 2000;50(4-5):279-289. DOI: 10.1080/713803728

Tan M, Yin Y, Ma X, et al. Glutathione system enhancement for cardiac protection: pharmacological options against oxidative stress and ferroptosis. Cell Death Dis. 2023;14(2):131. DOI: 10.1038/s41419-023-05645-y

Liao M, He X, Zhou Y, Peng W, Zhao XM, Jiang M. Coenzyme Q10 in atherosclerosis. Eur J Pharmacol. 2024; 970:176481. DOI: 10.1016/j.ejphar.2024.176481

Clemente-Suárez VJ, Bustamante-Sanchez Á, Mielgo-Ayuso J, Martínez-Guardado I, Martín-Rodríguez A, Tornero-Aguilera JF. Antioxidants and sports performance. Nutrients. 2023;15(10):2371. DOI: 10.3390/nu15102371

Fladerer JP, Grollitsch S. Comparison of Coenzyme Q10 (Ubiquinone) and Reduced Coenzyme Q10 (Ubiquinol) as Supplement to Prevent Cardiovascular Disease and Reduce Cardiovascular Mortality. Curr Cardiol Rep. 2023;25 (12):1759-1767. DOI: 10.1007/s11886-023-01992-6

Marak WD. Exploring the potential impact of herbal antioxidants on human cardiovascular diseases. Sci Phytochem. 2023;2(2):70-90. DOI: 10.58920/sciphy02020070

Batool R, Umer MJ, Hussain B, Anees M, Wang Z. Molecular mechanisms of superoxide dismutase (SODs)-mediated defense in controlling oxidative stress in plants. In: Aftab T, Hakeem KR, eds. Antioxidant defense in plants. Springer Nature Singapore; 2022:157-179. DOI: 10.1007/978-981-16-7981-0_8

Gao W, He J, Chen L, et al. Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme. Nat Commun. 2023;14(1):160. DOI: 10.1038/s41467-023-35828-2

Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. Chemistry of hydrogen peroxide formation and elimination in mammalian cells, and its role in various pathologies. Stresses. 2022; 2(3):256-274. DOI: 10.3390/stresses2030019

Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms. Redox Biol. 2013;1 (1):244-257. DOI: 10.1016/j.redox.2013.01.014

Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363-383. DOI: 10.1038/s41580-020-0230-3

Ohta S. Molecular hydrogen may activate the transcription factor Nrf2 to alleviate oxidative stress through the hydrogen-targeted porphyrin | Ohta | Aging Pathobiology and Therapeutics. Published online May 23, 2023.

Accessed On: April 23, 2024.

Khan SU, Khan SU, Suleman M, et al. Natural allies for heart health: Nrf2 Activation and cardiovascular disease management. Curr Probl Cardiol. 2024;49 (1, Part B):102084. DOI: 10.1016/j.cpcardiol.2023.102084

Thiruvengadam R, Venkidasamy B, Samynathan R, Govindasamy R, Thiruvengadam M, Kim JH. Association of nanoparticles and Nrf2 with various oxidative stress-mediated diseases. Chem Biol Interact. 2023;380:110535. DOI: 10.1016/j.cbi.2023.110535

Cheng CK, Ding H, Jiang M, Yin H, Gollasch M, Huang Y. Perivascular adipose tissue: Fine-tuner of vascular redox status and inflammation. Redox Biol. 2023;62:102683. DOI: 10.1016/j.redox.2023.102683

Tossetta G, Fantone S, Piani F, et al. Modulation of NRF2/KEAP1 Signaling in Preeclampsia. Cells. 2023;12(11):1545. DOI: 10.3390/cells12111545

Zuchi C, Tritto I, Carluccio E, Mattei C, Cattadori G, Ambrosio G. Role of endothelial dysfunction in heart failure. Heart Fail Rev. 2020;25(1):21-30. DOI: 10.1007/s10741-019-09881-3

Nikdoust F, Pazoki M, Mohammadtaghizadeh M, Aghaali MK, Amrovani M. Exosomes: Potential Player in Endothelial Dysfunction in Cardiovascular Disease. Cardiovasc Toxicol. 2022;22(3):225-235. DOI: 10.1007/s12012-021-09700-y

Wang W, Kang PM. Oxidative Stress and Antioxidant Treatments in Cardiovascular Diseases. Antioxidants. 2020;9(12):1292. DOI: 10.3390/antiox9121292

Dama A, Shpati K, Daliu P, Dumur S, Gorica E, Santini A. Targeting metabolic diseases: the role of nutraceuticals in modulating oxidative stress and inflammation. Nutrients. 2024;16(4):507. DOI: 10.3390/nu16040507

Kumar M, Deshmukh P, Kumar M, Bhatt A, Sinha AH, Chawla P. Vitamin E Supplementation and cardiovascular health: A comprehensive review. Cureus. Published online November 2, 2023. DOI: 10.7759/cureus.48142

Meulmeester FL, Luo J, Martens LG, Mills K, van Heemst D, Noordam R. Antioxidant supplementation in oxidative stress-related diseases: What have we learned from studies on alpha-tocopherol? Antioxidants. 2022;11(12):2322. DOI: 10.3390/antiox11122322