Regions and Sub-regions Dysfunctions in Alzheimer’s during Rest

Main Article Content

K. C. Usha Usha
Dr. H. N. Suma

Abstract

Aims: Alterations in the cerebrum structurally and functionally are triggered largely due to an increase in neuro depressive brain disorders like Alzheimer’s. This study aims is to determine these alterations in the regions of the cerebrum which are significant and distinguishing in Alzheimer’s disease subjects compared to healthy. We employ the most potential resting-state functional Magnetic Resonance Imaging (rs-fMRI) modality for this analysis.

Methodology: 24 Alzheimer’s disease (AD) and 25 Healthy Controlled (HC) subjects were evaluated with rs-fMRI which is more efficient in anticipating neuronal activity changes. Thus, obtained data of all subjects were preprocessed and components of larger networks to smaller regions were extracted by independent component analysis (ICA) method. Differences in resting-state connectivity were examined for 6 networks of interest viz., Auditory network, Central Executive network, Default mode network, Silence mode network, Sensory-motor network and Visual network and their regions, which are affected due to the common symptoms of Alzheimer’s disease-like memory, thinking and behavioral changes. Statistical analysis was done with one sample t-test to check the functional connectivity activations in Resting-State Networks (RSNs) and regions of both AD & HC groups at a threshold of T>2. Finally, to obtain the abnormal sub-regions in each of the RSNs of AD a two-sample t-test was carried out at a threshold of P < .03.

Results: Our method potentially identifies the functional connectivity alterations and core regions dysfunction amongst the major 6 RSNs in AD compared to HC subjects. The results also showed decreased connectivity in regions of sensory-motor and default mode networks increased connectivity in regions of central executive and silence mode network along with some of the sub-regions dysfunctions in AD.

Conclusion: Modifications in functional connectivity within the major RSNs and regions have been detected which serves as a capability to determine an early biomarker and examining the disease progression.

Keywords:
Functional Magnetic Resonance Imaging (fMRI), resting-state fMRI, functional connectivity, Alzheimer’s disease, independent component analysis, resting state networks, auditory network, central executive network, default mode network, salience network; sensory-motor network, visual network.

Article Details

How to Cite
Usha, K. C. U., & Suma, D. H. N. (2020). Regions and Sub-regions Dysfunctions in Alzheimer’s during Rest. Asian Journal of Medicine and Health, 18(5), 43-54. https://doi.org/10.9734/ajmah/2020/v18i530205
Section
Original Research Article

References

DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14(1): 32.

PMCID: PMC6679484

Available:http://dx.doi.org/10.1186/s13024-019-0333-5

La Iglesia-Vaya M de, Molina-Mateo J, Jose MSA, Marti-Bonmati L. Brain connections – Resting State fMRI functional connectivity. In: Fountas K, Editor. Novel Frontiers of Advanced Neuroimaging; 2013.

Lv H, Wang Z, Tong E, Williams LM, Zaharchuk G, Zeineh M, Goldstein-Piekarski AN, Ball TM, Liao C, Wintermark M. Resting-state functional MRI: Everything that non-experts have always wanted to know. AJNR Am J Neuroradiol. 2018;39(8):1390–1399.

PMCID: PMC6051935

Available:http://dx.doi.org/10.3174/ajnr.A5527

Fleisher AS, Sherzai A, Taylor C, Langbaum JBS, Chen K, Buxton RB. Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer’s disease risk groups. Neuroimage. 2009;47(4):1678–1690.

PMCID: PMC2722694

Available:http://dx.doi.org/10.1016/j.neuroimage.2009.06.021

Yao Z, Hu B, Zhao L, Liang C. Analysis of gray matter in AD patients and MCI subjects based Voxel-based morphometry. Brain Informatics. 2011;209–217.

Available:http://dx.doi.org/10.1007/978-3-642-23605-1_22

Li Y, Wang X, Li Y, Sun Y, Sheng C, Li H, Li X, Yu Y, Chen G, Hu X, Jing B, Wang D, Li K, Jessen F, Xia M, Han Y. Abnormal resting-state functional connectivity strength in mild cognitive impairment and its conversion to Alzheimer’s disease. Neural Plast. 2016;4680972.

PMCID: PMC4710946

Available:http://dx.doi.org/10.1155/2016/4680972

Farahani FV, Karwowski W, Lighthall NR. Application of graph theory for identifying connectivity patterns in human brain networks: A systematic review. Front Neurosci. 2019;13:585.

PMCID: PMC6582769

Available:http://dx.doi.org/10.3389/fnins.2019.00585

Bi X-A, Sun Q, Zhao J, Xu Q, Wang L. Non-linear ICA analysis of resting-state fMRI in mild cognitive impairment. Front Neurosci. 2018;12:413.

PMCID: PMC6018085

Available:http://dx.doi.org/10.3389/fnins.2018.00413

Khazaee A, Ebrahimzadeh A, Babajani-Feremi A. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease. Brain Imaging Behav. 2016;10(3): 799–817.

PMID: 26363784

Available:http://dx.doi.org/10.1007/s11682-015-9448-7

Santana AN, Cifre I, de Santana CN, Montoya P. Using deep learning and resting-state fMRI to classify chronic pain conditions. Front Neurosci. 2019;13:1313.

PMCID: PMC6929667

Available:http://dx.doi.org/10.3389/fnins.2019.01313

Badhwar A, Tam A, Dansereau C, Orban P, Hoffstaedter F, Bellec P. Resting-state network dysfunction in Alzheimer’s disease: A systematic review and meta-analysis. Alzheimers Dement. 2017;8:73–85.

PMCID: PMC5436069

Available:http://dx.doi.org/10.1016/j.dadm.2017.03.007

Iraji A, Calhoun VD, Wiseman NM, Davoodi-Bojd E, Avanaki MRN, Haacke EM, Kou Z. The connectivity domain: Analyzing resting-state fMRI data using feature-based data-driven and model-based methods. Neuroimage. 2016;134: 494–507.

PMCID: PMC4957565

Available:http://dx.doi.org/10.1016/j.neuroimage.2016.04.006

Cole DM, Smith SM, Beckmann CF. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci. 2010;4:8.

PMCID: PMC2854531

Available:http://dx.doi.org/10.3389/fnsys.2010.00008

Qureshi MNI, Ryu S, Song J, Lee KH, Lee B. Evaluation of functional decline in Alzheimer’s dementia using 3D deep learning and group ICA for rs-fMRI measurements. Front Aging Neurosci. 2019;11:8.

PMCID: PMC6378312

Available:http://dx.doi.org/10.3389/fnagi.2019.00008

Tian L, Kong Y, Ren J, Varoquaux G, Zang Y, Smith SM. Spatial vs. temporal features in ICA of resting-state fMRI - A quantitative and qualitative investigation in the context of response inhibition. PLoS One. 2013;8(6):e66572.

PMCID: PMC3688987

Available:http://dx.doi.org/10.1371/journal.pone.0066572

Iraji A, Faghiri A, Lewis N, Fu Z, DeRamus T, Qi S, Rachakonda S, Du Y, Calhoun V. Ultra-high-order ICA: An exploration of highly resolved data-driven representation of intrinsic connectivity networks (sparse ICNs). International Society for Optics and Photonics. 2019;111380I.

[Cited 2020 May 28]

Lu J, Zhang H, Hameed NUF, Zhang J, Yuan S, Qiu T, Shen D, Wu J. An automated method for identifying an independent component analysis-based language-related resting-state network in brain tumor subjects for surgical planning. Sci Rep. 2017;7(1):13769.

PMCID: PMC5653800

Available:http://dx.doi.org/10.1038/s41598-017-14248-5

Griffanti L, Douaud G, Bijsterbosch J, Evangelisti S, Alfaro-Almagro F, Glasser MF, Duff EP, Fitzgibbon S, Westphal R, Carone D, Beckmann CF, Smith SM. Hand classification of fMRI ICA noise compo-nents. Neuroimage. 2017;154:188–205.

PMCID: PMC5489418

Available:http://dx.doi.org/10.1016/j.neuroimage.2016.12.036

Wang Y, Li T-Q. Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM. Front Hum Neurosci. 2015;9:259.

PMCID: PMC4424860

Available:http://dx.doi.org/10.3389/fnhum.2015.00259

Vergun S, Gaggl W, Nair VA, Suhonen JI, Birn RM, Ahmed AS, Meyerand ME, Reuss J, DeYoe EA, Prabhakaran V. Classification and extraction of resting state networks using healthy and epilepsy fMRI data. Front Neurosci. 2016;10: 440.

PMCID: PMC5037187

Available:http://dx.doi.org/10.3389/fnins.2016.00440

Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, Jack CR Jr, Jagust WJ, Shaw LM, Toga AW, Trojanowski JQ, Weiner MW. Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical characterization. Neurology. 2010;74(3):201–209.

PMCID: PMC2809036

Available:http://dx.doi.org/10.1212/WNL.0b013e3181cb3e25

Chao-Gan YAN. Data Processing Assistant for Resting-State fMRI (DPARSF). The R-fMRI Network; 2014.

[Cited 2020 May 28]

Available:http://rfmri.org/DPARSF

Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, Calhoun VD. Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp. 2011;32(12):2075–2095.

PMCID: PMC3117074

Available:http://dx.doi.org/10.1002/hbm.21170

Von dem Hagen EAH, Stoyanova RS, Baron-Cohen S, Calder AJ. Reduced functional connectivity within and between “social” resting state networks in autism spectrum conditions. Soc Cogn Affect Neurosci. 2013;8(6):694–701.

PMCID: PMC3739917

Available:http://dx.doi.org/10.1093/scan/nss053

Majeed W, Avison MJ. Robust data driven model order estimation for independent component analysis of FMRI data with low contrast to noise. PLoS One. 2014;9(4): e94943.

PMCID: PMC4005775

Available:http://dx.doi.org/10.1371/journal.pone.0094943

Maldjian JA. WFU Pickatlas.

Available:http://www.fmri.wfubmc.edu/download.htm

De Lacy N, Calhoun VD. Dynamic connectivity and the effects of maturation in youth with attention deficit hyperactivity disorder. Netw Neurosci. 2019;3(1):195–216.

PMCID: PMC6372020

Available:http://dx.doi.org/10.1162/netn_a_00063

Castellazzi G, Palesi F, Casali S, Vitali P, Sinforiani E, Wheeler-Kingshott CAM, D’Angelo E. A comprehensive assessment of resting state networks: Bidirectional modification of functional integrity in cerebro-cerebellar networks in dementia. Front Neurosci. 2014;8:223.

PMCID: PMC4115623

Available:http://dx.doi.org/10.3389/fnins.2014.00223

Rosazza C, Aquino D, D’Incerti L, Cordella R, Andronache A, Zacà D, Bruzzone MG, Tringali G, Minati L. Preoperative mapping of the sensorimotor cortex: Comparative assessment of task-based and resting-state FMRI. PLoS One. 2014;9(6):e98860.

PMCID: PMC4051640

Available:http://dx.doi.org/10.1371/journal.pone.0098860

Joo SH, Lim HK, Lee CU. Three large-scale functional brain networks from resting-state functional MRI in subjects with different levels of cognitive impairment. Psychiatry Investing. 2016; 13(1):1–7.

PMCID: PMC4701672

Available:http://dx.doi.org/10.4306/pi.2016.13.1.1

Moerel M, De Martino F, Formisano E. An anatomical and functional topography of human auditory cortical areas. Front Neurosci. 2014;8:225.

PMCID: PMC4114190

Available:http://dx.doi.org/10.3389/fnins.2014.00225

Wang P, Zhou B, Yao H, Zhan Y, Zhang Z, Cui Y, Xu K, Ma J, Wang L, An N, Zhang X, Liu Y, Jiang T. Aberrant intra- and inter-network connectivity architectures in Alzheimer’s disease and mild cognitive impairment. Sci Rep. 2015;5:14824.

PMCID: PMC4594099

Available:http://dx.doi.org/10.1038/srep14824

Zheng W, Liu X, Song H, Li K, Wang Z. Altered functional connectivity of cognitive-related cerebellar subregions in Alzheimer’s disease. Front Aging Neurosci. 2017;9:143.

PMCID: PMC5432635

Available:http://dx.doi.org/10.3389/fnagi.2017.00143

Sorg C, Riedl V, Mühlau M, Calhoun VD, Eichele T, Läer L, Drzezga A, Förstl H, Kurz A, Zimmer C, Wohlschläger AM. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci USA. 2007;104(47):18760–18765.

PMCID: PMC2141850

Available:http://dx.doi.org/10.1073/pnas.0708803104

Chand GB, Wu J, Hajjar I, Qiu D. Interactions of the salience network and its subsystems with the default-mode and the central-executive networks in normal aging and mild cognitive impairment. Brain Connect. 2017;7(7):401–412.

PMCID: PMC5647507

Available:http://dx.doi.org/10.1089/brain.2017.0509

Lu J, Testa N, Jordan R, Elyan R, Kanekar S, Wang J, Eslinger P, Yang QX, Zhang B, Karunanayaka PR. Functional connectivity between the resting-state olfactory network and the hippocampus in Alzheimer’s disease. Brain Sci. 2019;9(12).

PMCID: PMC6955985

Available:http://dx.doi.org/10.3390/brainsci9120338

Xue J, Guo H, Gao Y, Wang X, Cui H, Chen Z, Wang B, Xiang J. Altered directed functional connectivity of the hippocampus in mild cognitive impairment and Alzheimer’s disease: A resting-state fMRI study. Front Aging Neurosci. 2019;11:326.

PMCID: PMC6905409

Available:http://dx.doi.org/10.3389/fnagi.2019.00326

Wang P, Li R, Yu J, Huang Z, Li J. Frequency-dependent brain regional homogeneity alterations in patients with mild cognitive impairment during working memory state relative to resting state. Front Aging Neurosci. 2016;8:60.

PMCID: PMC4805610

Available:http://dx.doi.org/10.3389/fnagi.2016.00060

Cera N, Esposito R, Cieri F, Tartaro A. Altered cingulate cortex functional connectivity in normal aging and mild cognitive impairment. Front Neurosci. 2019;13:857.

PMCID: PMC6753224

Available:http://dx.doi.org/10.3389/fnins.2019.00857

Liu X, Chen X, Zheng W, Xia M, Han Y, Song H, Li K, He Y, Wang Z. Altered functional connectivity of insular sub regions in Alzheimer’s disease. Front Aging Neurosci. 2018;10:107.

PMCID: PMC5905235

Available:http://dx.doi.org/10.3389/fnagi.2018.00107

Badhwar A, Tam A, Dansereau C, Orban P, Hoffstaedter F, Bellec P. Resting-state network dysfunction in Alzheimer’s disease: A systematic review and meta-analysis Alzheimer’s Dement. 2017;8:73–85.

PMCID: PMC5436069

Available:http://dx.doi.org/10.1016/j.dadm.2017.03.007

Cai S, Chong T, Zhang Y, Li J, von Deneen KM, Ren J, Dong M, Huang L, Alzheimer’s disease neuroimaging initiative. altered functional connectivity of fusiform gyrus in subjects with amnestic mild cognitive impairment: A resting-state fMRI study. Front Hum Neurosci. 2015;9:471.

PMCID: PMC4550786

Available:http://dx.doi.org/10.3389/fnhum.2015.00471